Du 02/02 au 06/02/2026

Cette semaine, les colles porteront sur la dynamique du point en référentiel galiléen : utilisation du Principe Fondamental de la Dynamique (l’aspect énergétique n’est pas au programme cette semaine).

Je vous encourage à vous entraîner à la projection de vecteurs avec cette application (une interrogation de cours sur la projection de vecteurs aura lieu vendredi) :

Désormais, à partir du mois de Février, si un élève écrit une expression non homogène sans s’en rendre compte, il sera fusillé sur place !… 😈😈😈

Espace et temps classiques. Référentiel d’observation. Caractère relatif du mouvement.
Description d’un mouvement. Vecteur position, vecteur vitesse, vecteur accélération.
– Savoir établir les expressions des composantes du vecteur position, du vecteur vitesse et du vecteur accélération dans le seul cas des coordonnées cartésiennes et cylindriques.
– Savoir expliquer à partir d’un schéma le déplacement élémentaire dans les différents systèmes de coordonnées, construire la base locale associée et en déduire les composantes du vecteur vitesse en coordonnées cartésiennes et cylindriques.
– Savoir choisir un système de coordonnées adapté au problème posé.
Exemple 1 : mouvement de vecteur accélération constant
– Obtenir la vitesse et la position en fonction du temps. Obtenir la trajectoire en coordonnées cartésiennes.
Exemple 2 : mouvement circulaire uniforme et non uniforme
– Savoir exprimer les composantes du vecteur position, du vecteur vitesse et du vecteur accélération en coordonnées polaires planes.
– Identifier les liens entre les composantes du vecteur accélération, la courbure de la trajectoire, la norme du vecteur vitesse et sa variation temporelle.
– Situer qualitativement la direction du vecteur accélération dans la concavité d’une trajectoire plane.
Forces. Principes des actions réciproques.
– Établir un bilan des forces sur un système, ou plusieurs systèmes en interaction et en rendre compte sur une figure.
Référentiel galiléen. Principe d’inertie.
– Décrire le mouvement relatif de deux référentiels galiléens.
Loi de la quantité de mouvement (“principe fondamental de la dynamique”) dans un référentiel galiléen.
– Déterminer les équations du mouvement d’un point matériel ou du centre d’inertie d’un système fermé.
Mouvement dans un champ de pesanteur uniforme.
– Mettre en équation le mouvement sans frottement et le caractériser comme un mouvement à vecteur-accélération constant.
Influence de la résistance de l’air.
– Prendre en compte la traînée pour modéliser une situation réelle.
– Exploiter une équation différentielle sans la résoudre analytiquement : analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats fournis par un logiciel d’intégration numérique.
Pendule simple.
– Établir l’équation du mouvement du pendule simple.
– Justifier l’analogie avec l’oscillateur harmonique dans le cadre de l’approximation linéaire.
Lois de Coulomb du frottement de glissement dans le cas d’un solide en translation.
– Exploiter les lois de Coulomb fournies dans les trois situations : équilibre, mise en mouvement, freinage.
– Formuler une hypothèse (quant au glissement ou non) et la valider.